Self-assembly of new cobalt complexes based on [Co(SCN)4], synthesis, empirical, antioxidant activity, and quantum theory investigations
Year of publication
2022
Authors
Ferchichi, Amal; Makhlouf, Jawher; El Bakri, Youness; Saravanan, Kandasamy; Valkonen, Arto; Hashem, Heba E.; Ahmad, Sajjad; Smirani, Wajda
Abstract
The cobalt (II) complexes have been synthesized from the reaction of the cationic entities (3,4-dimethylaniline (1) and histamine (2)) with metallic salt CoCl2⋅6H2O and thiocyanate ion (SCN−) as a ligand in H2O/ethanolic solution and processing by the evaporation crystal growth method at room temperature to get crystals. The synthesized complex has been fully characterized by single-crystal X-ray diffraction. UV–Visible, FTIR spectroscopy, TGA analysis, and DFT circulations were also performed. The crystal structural analysis reveals that the solid (1) {[Co(SCN)4] (C8H12N)3}·Cl crystallizes in the monoclinic system with the space group P21/n and the solid (2) {[Co(SCN)4](C5H11N3)2}·2Cl crystallizes in the monoclinic space group P21/m. Metal cations are joined into corrugated chains parallel to the b-axis direction in (1) and (2) by four thiocyanate anions. The crystal structures of (1) and (2) were calculated using XRPD data, indicating that they are closely connected to the DRX mono-crystal results. Different interactions pack the system into a ring formed by N–H⋯Cl and N–H⋯S hydrogen bonds. C–H⋯π and the π⋯π stacking of anilinuim ring for (1) and N–H⋯S intermolecular interactions for (1) and (2) increase the crystals' robustness. Hirshfeld surface analysis cum 2D fingerprint plots visualize the main intermolecular interactions with their contributions in the solid-state phase. The molecular geometries of both complexes obtained from the crystal structure were used for quantum chemical calculation. Here, frontier orbital analysis and electrostatic potential illustrate the chemical reactivities of metal–organic complexes. QTAIM and NCI analysis reveal the strength of interactions at the electronic level.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
12
Article number
15828
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Chemical sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1038/s41598-022-18471-7
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes