TBSSvis : Visual analytics for Temporal Blind Source Separation
Year of publication
2022
Authors
Piccolotto, Nikolaus; Bögl, Markus; Gschwandtner, Theresia; Muehlmann, Christoph; Nordhausen, Klaus; Filzmoser, Peter; Miksch, Silvia
Abstract
Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component Analysis (PCA) as it separates the input data into univariate components and is applicable to suitable datasets from various domains, such as medicine, finance, or civil engineering. Despite TBSS’s broad applicability, the involved tasks are not well supported in current tools, which offer only text-based interactions and single static images. Analysts are limited in analyzing and comparing obtained results, which consist of diverse data such as matrices and sets of time series. Additionally, parameter settings have a big impact on separation performance, but as a consequence of improper tooling, analysts currently do not consider the whole parameter space. We propose to solve these problems by applying visual analytics (VA) principles. Our primary contribution is a design study for TBSS, which so far has not been explored by the visualization community. We developed a task abstraction and visualization design in a user-centered design process. Task-specific assembling of well-established visualization techniques and algorithms to gain insights in the TBSS processes is our secondary contribution. We present TBSSvis, an interactive web-based VA prototype, which we evaluated extensively in two interviews with five TBSS experts. Feedback and observations from these interviews show that TBSSvis supports the actual workflow and combination of interactive visualizations that facilitate the tasks involved in analyzing TBSS results.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Publisher
Volume
6
Issue
4
Pages
51-66
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Statistics and probability; Computer and information sciences
Keywords
[object Object],[object Object],[object Object]
Publication country
China
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
Yes
DOI
10.1016/j.visinf.2022.10.002
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes