undefined

Insight into bioavailability of various insect meals for European perch (Perca fluviatilis) : A nutritional and stable isotopic evaluation

Year of publication

2023

Authors

Tran, Hung Quang; Nguyen, Tram Thi; Prokešová, Markéta Dvořáková; Matoušek, Jan; Tomčala, Aleš; Van Doan, Hien; Kiljunen, Mikko; Stejskal, Vlastimil

Abstract

The present study evaluated nutritional composition, stable isotopic signature, apparent digestibility coefficient (ADCs), and relative contribution of seven insect meals, namely black soldier fly (Hermetia illucens) (BSF), common housefly (Musca domestica) (CHF), yellow mealworm (Tenebrio molitor) (YMW), lesser mealworm (Alphitobius diaperinus) (LMW), house cricket (Acheta domesticus) (HC), banded cricket (Gryllodes sigillatus) (BC) and field cricket (Gryllus assimilis) (FC), on European perch (Perca fluviatilis), a potential aquaculture species in Europe. Nutritional composition on a dry matter basis varied widely across insect species. YMW, HC, and BC appeared to contain high protein content (>70%), whereas lower content was found in defatted BSF, LMW, and CHF (ranging 55–59%), adult FC remained intermediate (66.83%). Lipid levels were highest in LMW and CHF (27.72% and 26.53%, respectively), medium in BSF, HC, BC and FC, and lowest in the highly defatted YMW (8.14%). Methionine and lysine were the first limiting amino acids in all insect meals. Heatmap visualization indicated considerable similarity in amino acid profile between fishmeal and YMW. Most insect meals contain a high amount of saturated, monosaturated fatty acids and a lack of n-3 fatty acids. Although macro-minerals were lower in insect meals than in fishmeal, the trace minerals of YMW, BSF, HC, and FC surpassed fishmeal, implying that insect meals are an excellent source of trace minerals. The digestibility of nutrients and energy differed significantly among insect meals. Dry matter ADC varied from 67.91% (YMW) to 85.02% (LMW), with LMW and CHF significantly higher than YMW. Protein ADC was lowest in YMW (69.03%) and greatest in LMW (91.94%) and CHF (93.53%). BSF and HC exerted absolute lipid digestibility (104.86 and 99.99%, respectively), followed by LMW (94.75%), whereas BC had the lowest lipid digestibility among insect meals. Energy digestibility favored BSF, CHF, FC, HC, and LMW, but not BC and YMW. Ash and phosphorus digestibility did not differ among insect meals. FC contributed significantly to perch muscle development (mean and interquartile range; 23.9, 10.6–33.8%), followed by CHF (19.8%, 8.8–29.7%), whereas BC imprints relatively low contribution (12.6%, 7.4–17.4%). The stable isotope and mixing models provide insight into the role of ingredients in the accretion of perch muscle as well as in nutritional complementarity among them in satisfying nutrient requirements, thus growth performance of perch.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Aquaculture

Publisher

Elsevier BV

Volume

563, 2

Article number

738912

​Publication forum

51544

​Publication forum level

2

Open access

Open access in the publisher’s service

No

Self-archived

No

Other information

Fields of science

Ecology, evolutionary biology

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

Netherlands

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.aquaculture.2022.738912

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes