Alterations in Daphnia magna exposed to enniatin B and beauvericin provide additional value as environmental indicators
Year of publication
2023
Authors
Juan-García, Ana; Pakkanen, Hannu; Juan, Cristina; Vehniäinen, Eeva-Riikka
Abstract
Mycotoxins beauvericin (BEA) and enniatin B (ENN B) affect negatively several systems and demand more studies as the mechanisms are still unclear. The simultaneous presence of contaminants in the environment manifests consequences of exposure for both animals and flora. Daphnia magna is considered an ideal invertebrate to detect effects of toxic compounds and environmental alterations. In this study, the potential toxicity and the basic mechanism of BEA and ENN B individually and combined were studied in D. magna. Acute and delayed toxicity were evaluated, and transcript levels of genes involved in xenobiotic metabolism (mox, gst, abcb1, and abcc5), reproduction, and oxidative stress (vtg-SOD) were analyzed by qPCR. Though no acute toxicity was found, results revealed a spinning around and circular profile of swimming, a strong decrease of survival after 72 h for BEA and ENN B at 16 µM and 6.25 µM, respectively, while for BEA + ENN B [8 + 1.6] µM after 96 h. The amount of mycotoxin remaining in the media revealed that the higher the concentration assayed the higher the amount remaining in the media. Differential regulation of genes suggests that xenobiotic metabolism is affected denoting different effects on transcription for tested mycotoxins. The results provide new insights into the underlying risk assessment of BEA and ENN B not only through food for consumers but also for the environment.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Publisher
Volume
249
Article number
114427
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Ecology, evolutionary biology
Keywords
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.ecoenv.2022.114427
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes