Mixed support for an alignment between phenotypic plasticity and genetic differentiation in damselfly wing shape
Year of publication
2023
Authors
Johansson, Frank; Berger, David; Outomuro, David; Sniegula, Szymon; Tunon, Meagan; Watts, Phillip C.; Rohner, Patrick Thomas
Abstract
The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
36
Issue
2
Pages
368-380
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Ecology, evolutionary biology
Keywords
[object Object],[object Object],[object Object],[object Object]
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1111/jeb.14145
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes