Two-neutrino ββ decay of 136Xe to the first excited 0+ state in 136Ba
Year of publication
2023
Authors
Jokiniemi, L.; Romeo, B.; Brase, C.; Kotila, J.; Soriano, P.; Schwenk, A.; Menéndez, J.
Abstract
We calculate the nuclear matrix element for the two-neutrino ββ decay of 136Xe into the first excited 0+ state of 136Ba. We use different many-body methods: the quasiparticle random-phase approximation (QRPA) framework, the nuclear shell model, the interacting boson model (IBM-2), and an effective field theory (EFT) for β and ββ decays. While the QRPA suggests a decay rate at the edge of current experimental limits, the shell model points to a half-life about two orders of magnitude longer. The predictions of the IBM-2 and the EFT lie in between, and the latter provides systematic uncertainties at leading order. An analysis of the running sum of the nuclear matrix element indicates that subtle cancellations between the contributions of intermediate states can explain the different theoretical predictions. For the EFT, we also present results for two-neutrino ββ decays to the first excited 0+ state in other nuclei.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
838
Article number
137689
ISSN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Physical sciences
Keywords
[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.physletb.2023.137689
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes