undefined

Two-neutrino ββ decay of 136Xe to the first excited 0+ state in 136Ba

Year of publication

2023

Authors

Jokiniemi, L.; Romeo, B.; Brase, C.; Kotila, J.; Soriano, P.; Schwenk, A.; Menéndez, J.

Abstract

We calculate the nuclear matrix element for the two-neutrino ββ decay of 136Xe into the first excited 0+ state of 136Ba. We use different many-body methods: the quasiparticle random-phase approximation (QRPA) framework, the nuclear shell model, the interacting boson model (IBM-2), and an effective field theory (EFT) for β and ββ decays. While the QRPA suggests a decay rate at the edge of current experimental limits, the shell model points to a half-life about two orders of magnitude longer. The predictions of the IBM-2 and the EFT lie in between, and the latter provides systematic uncertainties at leading order. An analysis of the running sum of the nuclear matrix element indicates that subtle cancellations between the contributions of intermediate states can explain the different theoretical predictions. For the EFT, we also present results for two-neutrino ββ decays to the first excited 0+ state in other nuclei.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Physics Letters B

Publisher

Elsevier

Volume

838

Article number

137689

​Publication forum

65047

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

Self-archived

Yes

Other information

Fields of science

Physical sciences

Keywords

[object Object],[object Object]

Publication country

Netherlands

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.physletb.2023.137689

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes