Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture
Year of publication
2023
Authors
Liu, Hang; Cui, Shaowei; Zhao, Xiaohui; Cong, Fengyu
Abstract
Obstructive sleep apnea (OSA) is a sleep breathing disorder that can seriously affect the health of patients. The manual diagnostic of OSA through the Polysomnography (PSG) recordings is time-consuming and tedious. Electrocardiogram (ECG) signals have been an alternative for OSA detection. This paper proposes a CNN-Transformer architecture for automatic OSA detection based on single-channel ECG signals. The proposed architecture has two fundamental parts. The first part has the aim of learning a feature representation from ECG signals by using the CNN. The second part consists mainly of the Transformer, a model structure built solely with self-attention mechanism, which is used to model the global temporal context and to perform classification tasks. The effectiveness of the proposed method was validated on Apnea-ECG dataset. The dataset consists of 70 ECG recordings with an annotation for each minute of each recording. The current and adjacent 1-min epochs were combined to form the 3-min input epoch. Besides, experiments were set up with different baseline deep learning models for sequence modeling to verify their effects on classification performance. The per-segment classification accuracy reached 88.2% and the area under the receiver operating characteristic curve (AUC) was 0.95. The per-recording classification accuracy reached 100% and the mean absolute error (MAE) was 4.33. Experimental results demonstrate that the Transformer structure and a 3-min input time window both effectively improve the classification performance. The proposed method can accurately detect OSA from single-channel ECG signals and provides a promising and reliable solution for home portable detection of OSA.
Show moreOrganizations and authors
University of Jyväskylä
Cong Fengyu
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
82
Article number
104581
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
No
Self-archived
No
Other information
Fields of science
Computer and information sciences; Medical engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.bspc.2023.104581
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes