Degradation of Antibiotic Vancomycin by UV Photolysis and Pulsed Corona Discharge Combined with Extrinsic Oxidants
Year of publication
2023
Authors
Nikitin, Dmitri; Kaur, Balpreet; Preis, Sergei; Dulova, Niina
Abstract
Antibiotics are the most frequently detected pharmaceuticals in the environment creating conditions for the development of resistant genes in bacteria. Degradation and mineralization of glycopeptide antibiotic vancomycin (VMN) were examined by UV photolysis, pulsed corona discharge (PCD), and their combinations with extrinsic oxidants, hydrogen peroxide (HP), peroxydisulfate (PDS), and peroxymonosulfate (PMS). Both combinations were effective in VMN degradation and faster at pH 11 than in acidic or neutral media. Combined with the UV photolysis, HP showed a higher oxidation rate than other oxidants, whereas PMS and PDS proved to be more efficient in combinations with PCD. In contrast to low-to-moderate mineralization of VMN in the UV/oxidant combinations, PCD and PCD/oxidant combinations appeared to be more effective, reaching up to 90% of TOC removal in acidic/neutral solutions. Application of extrinsic oxidants resulted in an energy efficiency of VMN 90% oxidation improved from 36 to 61 g kW−1 h−1 in HP-assisted photolysis, and from 195 to 250 g kW−1 h−1 in PCD with additions of HP and PDS, thus showing the promising character of the combined treatment.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Chemical sciences; Environmental engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
Switzerland
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.3390/catal13030466
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes