undefined

Atomistic View of the Energy Transfer in a Fluorophore-Functionalized Gold Nanocluster

Year of publication

2023

Authors

Pyo, Kyunglim; Matus, María Francisca; Hulkko, Eero; Myllyperkiö, Pasi; Malola, Sami; Kumpulainen, Tatu; Häkkinen, Hannu; Pettersson, Mika

Abstract

Understanding the dynamics of Förster resonance energy transfer (FRET) in fluorophore-functionalized nanomaterials is critical for developing and utilizing such materials in biomedical imaging and optical sensing applications. However, structural dynamics of noncovalently bound systems have a significant effect on the FRET properties affecting their applications in solutions. Here, we study the dynamics of the FRET in atomistic detail by disclosing the structural dynamics of the noncovalently bound azadioxotriangulenium dye (KU) and atomically precise gold nanocluster (Au25(p-MBA)18, p-MBA = para-mercaptobenzoic acid) with a combination of experimental and computational methods. Two distinct subpopulations involved in the energy transfer process between the KU dye and the Au25(p-MBA)18 nanoclusters were resolved by time-resolved fluorescence experiments. Molecular dynamics simulations revealed that KU is bound to the surface of Au25(p-MBA)18 by interacting with the p-MBA ligands as a monomer and as a π–π stacked dimer where the center-to-center distance of the monomers to Au25(p-MBA)18 is separated by ∼0.2 nm, thus explaining the experimental observations. The ratio of the observed energy transfer rates was in reasonably good agreement with the well-known 1/R6 distance dependence for FRET. This work discloses the structural dynamics of the noncovalently bound nanocluster-based system in water solution, providing new insight into the dynamics and energy transfer mechanism of the fluorophore-functionalized gold nanocluster at an atomistic level.
Show more

Organizations and authors

University of Jyväskylä

Hulkko Eero

Häkkinen Hannu

Pyo Kyunglim

Matus Cortés Maria Orcid -palvelun logo

Pettersson Mika Orcid -palvelun logo

Myllyperkiö Pasi Orcid -palvelun logo

Malola Sami

Kumpulainen Tatu Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

145

Issue

27

Pages

14697-14704

​Publication forum

61812

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Chemical sciences

Keywords

[object Object],[object Object],[object Object]

Publication country

United States

Internationality of the publisher

International

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1021/jacs.3c02292

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes