New spiro-indeno[1,2-b]quinoxalines clubbed with benzimidazole scaffold as CDK2 inhibitors for halting non-small cell lung cancer; stereoselective synthesis, molecular dynamics and structural insights
Year of publication
2023
Authors
Barakat, Assem; Alshahrani, Saeed; Al-Majid, Abdullah Mohammed; Alamary, Abdullah Saleh; Haukka, Matti; Abu-Serie Marwa, M.; Domingo, Luis R.; Ashraf, Sajda; Ul-Haq, Zaheer; Nafie, Mohamed S.; Teleb, Mohamed
Abstract
Despite the crucial role of CDK2 in tumorigenesis, few inhibitors reached clinical trials for managing lung cancer, the leading cause of cancer death. Herein, we report combinatorial stereoselective synthesis of rationally designed spiroindeno[1,2-b]quinoxaline-based CDK2 inhibitors for NSCLC therapy. The design relied on merging pharmacophoric motifs and biomimetic scaffold hopping into this privileged skeleton via cost‐effective one-pot multicomponent [3 + 2] cycloaddition reaction. Absolute configuration was assigned by single crystal x-ray diffraction analysis and reaction mechanism was studied by Molecular Electron Density Theory. Initial MTT screening of the series against A549 cells and normal lung fibroblasts Wi-38 elected 6b as the study hit regarding potency (IC50 = 54 nM) and safety (SI = 6.64). In vitro CDK2 inhibition assay revealed that 6b (IC50 = 177 nM) was comparable to roscovitine (IC50 = 141 nM). Docking and molecular dynamic simulations suggested that 6b was stabilised into CDK2 cavity by hydrophobic interactions with key aminoacids.
Show moreOrganizations and authors
University of Jyväskylä
Haukka Matti
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
38
Article number
1
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Chemical sciences
Keywords
[object Object],[object Object],[object Object],[object Object]
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1080/14756366.2023.2281260
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes