Towards a more robust non-invasive assessment of functional connectivity
Year of publication
2024
Authors
Westner, Britta U.; Kujala, Jan; Gross, Joachim; Schoffelen, Jan-Mathijs
Abstract
Non-invasive evaluation of functional connectivity, based on source-reconstructed estimates of phase-difference-based metrics, is notoriously non-robust. This is due to a combination of factors, ranging from a misspecification of seed regions to suboptimal baseline assumptions, and residual signal leakage. In this work, we propose a new analysis scheme of source level phase-difference-based connectivity, which is aimed at optimizing the detection of interacting brain regions. Our approach is based on the combined use of sensor subsampling and dual-source beamformer estimation of all-to-all connectivity on a prespecified dipolar grid. First, a pairwise two-dipole model, to account for reciprocal leakage in the estimation of the localized signals, allows for a usable approximation of the pairwise bias in connectivity due to residual leakage of ‘third party’ noise. Secondly, using sensor array subsampling, the recreation of multiple connectivity maps using different subsets of sensors allows for the identification of consistent spatially localized peaks in the 6-dimensional connectivity maps, indicative of true brain region interactions. These steps are combined with the subtraction of null coherence estimates to obtain the final coherence maps. With extensive simulations, we compared different analysis schemes for their detection rate of connected dipoles, as a function of signal-to-noise ratio, phase difference and connection strength. We demonstrate superiority of the proposed analysis scheme in comparison to single-dipole models, or an approach that discards the zero phase difference component of the connectivity. We conclude that the proposed pipeline allows for a more robust identification of functional connectivity in experimental data, opening up new possibilities to study brain networks with mechanistically inspired connectivity measures in cognition and in the clinic.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
2
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Medical engineering; Neurosciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1162/imag_a_00119
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes