undefined

Sampling design methods for making improved lake management decisions

Year of publication

2025

Authors

Koski, Vilja; Eidsvik, Jo

Abstract

The ecological status of lakes is important for understanding an ecosystem's biodiversity as well as for service water quality and policies related to land use and agricultural run-off. If the status is weak, then decisions about management alternatives need to be made. We assess the value of information of lake monitoring in Finland, where lakes are abundant. With reasonable ecological values and restoration costs, the value of information analysis can be compared with the survey's costs. Data are worth gathering if the expected value from the data exceeds the costs. From existing data, we specify a hierarchical Bayesian spatial logistic regression model for the ecological status of lakes. We then rely on functional approximations and Laplace approximations to get closed-form expressions for the value of information of a sampling design. The case study contains thousands of lakes. The combinatorially difficult design problem is to wisely pick the right subset of lakes for data gathering. To solve this optimization problem, we study the performance of various heuristics: greedy forward algorithms, exchange algorithms and Bayesian optimization approaches. The value of information increases quickly when adding lakes to a small design but then flattens out. Good designs are usually composed of lakes that are difficult to manage, while also balancing a variety of covariates and geographic coverage. The designs achieved by forward selection are reasonably good, but we can outperform them with the more nuanced search algorithms. Statistical designs clearly outperform other designs selected according to simpler criteria.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

36

Issue

1

Article number

e2842

​Publication forum

55389

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Statistics and probability; Environmental sciences

Keywords

[object Object],[object Object],[object Object],[object Object]

Publication country

United Kingdom

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1002/env.2842

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes