undefined

Rectangular partition for n-dimensional images with arbitrarily shaped rectilinear objects

Year of publication

2024

Authors

Pitkäkangas, Ville

Abstract

Partitioning two- or multidimensional polygons into rectangular and rectilinear components is a fundamental problem in computational geometry. Rectangular and rectilinear decomposition have multiple applications in various fields of arts as well as sciences, especially when dissecting information into smaller chunks for efficient analysis, manipulation, identification, storage, and retrieval is essential. This article presents three simple yet elegant solutions for splitting geometric shapes (particularly non-diagonal ones) into non-overlapping and rectangular sub-objects. Experimental results suggest that each proposed method can successfully divide n-dimensional rectilinear shapes, including those with holes, into rectangular components containing no background elements. The proposed methods underwent testing on a dataset of 13 binary images, each with 1 … 4 dimensions, and the most extensive image contained 4096 elements. The test session consisted of 5 runs where starting points for decomposition were randomized where applicable. In the worst case, two of the three methods could complete the task in under 40 ms, while this value for the third method was around 11 s. The success rate for all the algorithms was 100 %.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Heliyon

Publisher

Elsevier BV

Volume

10

Issue

16

Article number

e35956

​Publication forum

84134

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Article processing fee (EUR)

1934

Year of payment for the open publication fee

2024

Other information

Fields of science

Mathematics; Electronic, automation and communications engineering, electronics

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1016/j.heliyon.2024.e35956

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes