undefined

Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI

Year of publication

2024

Authors

Jin, Shan; Xu, Hongming; Dong, Yue; Wang, Xiaofeng; Hao, Xinyu; Qin, Fengying; Wang, Ranran; Cong, Fengyu

Abstract

Purpose In the current clinical diagnostic process, the gold standard for lymph node metastasis (LNM) diagnosis is histopathological examination following surgical lymphadenectomy. Developing a non-invasive and preoperative method for predicting LNM is necessary and holds significant clinical importance. Methods We develop a ranking attention multiple instance learning (RA-MIL) model that integrates convolutional neural networks (CNNs) and ranking attention pooling to diagnose LNM from T2 MRI. Our RA-MIL model applies the CNNs to derive imaging features from 2D MRI slices and employs ranking attention pooling to create patient-level feature representation for diagnostic classification. Based on the MIL and attention theory, informative regions of top-ranking MRI slices from LNM-positive patients are visualized to enhance the interpretability of automatic LNM prediction. This retrospective study collected 300 female patients with cervical cancer who underwent T2-weighted magnetic resonance imaging (MRI) scanning and histopathological diagnosis from one hospital (289 patients) and one open-source dataset (11 patients). Results Our RA-MIL model delivers promising LNM prediction performance, achieving the area under the receiver operating characteristic curve (AUC) of 0.809 on the internal test set and 0.833 on the public dataset. Experiments show significant improvements in LNM status prediction using the proposed RA-MIL model compared with other state-of-the-art (SOTA) comparative deep learning models. Conclusions The developed RA-MIL model has the potential to serve as a non-invasive auxiliary tool for preoperative LNM prediction, offering visual interpretability regarding informative MRI slices and regions in LNM-positive patients.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

Wiley

Volume

25

Issue

12

Article number

e14547

​Publication forum

59582

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

Self-archived

Yes

Other information

Fields of science

Computer and information sciences; Cancers

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

United States

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1002/acm2.14547

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes