Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI
Year of publication
2024
Authors
Jin, Shan; Xu, Hongming; Dong, Yue; Wang, Xiaofeng; Hao, Xinyu; Qin, Fengying; Wang, Ranran; Cong, Fengyu
Abstract
Purpose In the current clinical diagnostic process, the gold standard for lymph node metastasis (LNM) diagnosis is histopathological examination following surgical lymphadenectomy. Developing a non-invasive and preoperative method for predicting LNM is necessary and holds significant clinical importance. Methods We develop a ranking attention multiple instance learning (RA-MIL) model that integrates convolutional neural networks (CNNs) and ranking attention pooling to diagnose LNM from T2 MRI. Our RA-MIL model applies the CNNs to derive imaging features from 2D MRI slices and employs ranking attention pooling to create patient-level feature representation for diagnostic classification. Based on the MIL and attention theory, informative regions of top-ranking MRI slices from LNM-positive patients are visualized to enhance the interpretability of automatic LNM prediction. This retrospective study collected 300 female patients with cervical cancer who underwent T2-weighted magnetic resonance imaging (MRI) scanning and histopathological diagnosis from one hospital (289 patients) and one open-source dataset (11 patients). Results Our RA-MIL model delivers promising LNM prediction performance, achieving the area under the receiver operating characteristic curve (AUC) of 0.809 on the internal test set and 0.833 on the public dataset. Experiments show significant improvements in LNM status prediction using the proposed RA-MIL model compared with other state-of-the-art (SOTA) comparative deep learning models. Conclusions The developed RA-MIL model has the potential to serve as a non-invasive auxiliary tool for preoperative LNM prediction, offering visual interpretability regarding informative MRI slices and regions in LNM-positive patients.
Show moreOrganizations and authors
University of Jyväskylä
Cong Fengyu
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
25
Issue
12
Article number
e14547
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Computer and information sciences; Cancers
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1002/acm2.14547
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes