Product formulas for multiple stochastic integrals associated with Lévy processes
Year of publication
2024
Authors
Di Tella, Paolo; Geiss, Christel; Steinicke, Alexander
Abstract
In the present paper, we obtain an explicit product formula for products of multiple integrals w.r.t. a random measure associated with a Lévy process. As a building block, we use a representation formula for products of martingales from a compensated-covariation stable family. This enables us to consider Lévy processes with both jump and Gaussian part. It is well known that for multiple integrals w.r.t. the Brownian motion such product formulas exist without further integrability conditions on the kernels. However, if a jump part is present, this is, in general, false. Therefore, we provide here sufficient conditions on the kernels which allow us to establish product formulas. As an application, we obtain explicit expressions for the expectation of products of iterated integrals, as well as for the moments and the cumulants for stochastic integrals w.r.t. the random measure. Based on these expressions, we show a central limit theorem for the long time behaviour of a class of stochastic integrals. Finally, we provide methods to calculate the number of summands in the product formula.
Show moreOrganizations and authors
University of Jyväskylä
Geiss Christel
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
Early online
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Mathematics
Keywords
[object Object],[object Object]
Publication country
Spain
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1007/s13348-024-00456-6
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes