Torus computed tomography
Year of publication
2020
Authors
Ilmavirta, Joonas; Koskela, Olli; Railo, Jesse
Abstract
We present a new computed tomography (CT) method for inverting the Radon transform in 2 dimensions. The idea relies on the geometry of the flat torus; hence we call the new method Torus CT. We prove new inversion formulas for integrable functions, solve a minimization problem associated to Tikhonov regularization in Sobolev spaces, and prove that the solution operator provides an admissible regularization strategy with a quantitative stability estimate. This regularization is a simple postprocessing low-pass filter for the Fourier series of a phantom. We also study the adjoint and the normal operator of the X-ray transform on the flat torus. The X-ray transform is unitary on the flat torus. We have implemented the Torus CT method using MATLAB and tested it with simulated data with promising results. The inversion method is meshless in the sense that it gives out a closed form function that can be evaluated at any point of interest.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
80
Issue
4
Pages
1947-1976
ISSN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
No
Self-archived
Yes
Other information
Fields of science
Mathematics; Medical engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United States
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1137/19M1268070
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes