GPAW : An open Python package for electronic structure calculations
Year of publication
2024
Authors
Mortensen, Jens Jørgen; Larsen, Ask Hjorth; Kuisma, Mikael; Ivanov, Aleksei V.; Taghizadeh, Alireza; Peterson, Andrew; Haldar, Anubhab; Dohn, Asmus Ougaard; Schäfer, Christian; Jónsson, Elvar Örn; Hermes, Eric D.; Nilsson, Fredrik Andreas; Kastlunger, Georg; Levi, Gianluca; Jónsson, Hannes; Häkkinen, Hannu; Fojt, Jakub; Kangsabanik, Jiban; Sødequist, Joachim; Lehtomäki, Jouko; Heske, Julian; Enkovaara, Jussi; Winther, Kirsten Trøstrup; Dulak, Marcin; Melander, Marko M.; Ovesen, Martin; Louhivuori, Martti; Walter, Michael; Gjerding, Morten; Lopez-Acevedo, Olga; Erhart, Paul; Warmbier, Robert; Würdemann, Rolf; Kaappa, Sami; Latini, Simone; Boland, Tara Maria; Bligaard, Thomas; Skovhus, Thorbjørn; Susi, Toma; Maxson, Tristan; Rossi, Tuomas; Chen, Xi; Schmerwitz, Yorick Leonard A.; Schiøtz, Jakob; Olsen, Thomas; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer
Show moreAbstract
We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe–Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn–Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.
Show moreOrganizations and authors
Aalto University
Lehtomäki Jouko
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
160
Issue
9
Article number
092503
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Physical sciences; Chemical sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
Yes
DOI
10.1063/5.0182685
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes