Neural progenitor cell-derived exosomes in ischemia/reperfusion injury in cardiomyoblasts
Year of publication
2025
Authors
Arvola, Oiva; Stigzelius, Virpi; Ampuja, Minna; Kivelä, Riikka
Abstract
The physiologic relationship between the brain and heart is emerging as a novel therapeutic target for clinical intervention for acute myocardial infarction. In the adult human brain, vestigial neuronal progenitor stem cells contribute to neuronal repair and recovery following cerebral ischemic injury, an effect modulated by secreted exosomes. Ischemia conditioned neuronal cell derived supernatant and experimental stroke has been shown to be injurious to the heart. However, whether unconditioned neuronal progenitor cell derived-exosomes can instead protect myocardium represents a profound research gap. We investigated the effects of unconditioned neural stem cell derived exosomes as post-injury treatment for cardiomyoblasts from three neuronal culture conditions; adherent cultures, neurosphere cultures and bioreactor cultures. Small extracellular vesicles were enriched with serial ultracentrifugation, validated via nanoparticle tracking analysis, transmission electron microscopy and Western blot analysis prior to utilization as post-injury treatment for H9c2 cardiomyoblasts following oxygen and glucose deprivation. LDH assay was used to assess viability and Seahorse XF high-resolution respirometry analyzer to investigate post-injury cardiomyocyte bioenergetics. We found no evidence that unconditioned neural stem cell derived exosomes are cardiotoxic nor cardioprotective to H9c2 cardiomyoblasts following ischemia-reperfusion injury. Based on our findings, utilizing unconditioned neural stem cell derived exosomes as post-injury treatment for other organs should not have adverse effects to the damaged cardiac cells.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Parent publication name
Volume
26
Issue
1
Article number
11
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Biochemistry, cell and molecular biology; Biomedicine; Neurosciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
United Kingdom
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1186/s12868-025-00931-1
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes